
 53

Appendix A

Windows Automation API:
Overview

Source: “Windows Automation API SDK” from the Microsoft Developer Network (MSDN)

Web site. To view this content online, go to http://msdn.microsoft.com/en-us/library/

aa163327.aspx.

Windows offers two application programming interface (API) specifications for user interface

accessibility and software test automation: Microsoft Active Accessibility, and User Interface

Automation (UI Automation). Microsoft Active Accessibility is the legacy API that was intro-

duced in Windows 95 as a platform add-in. UI Automation is a Windows implementation of

the User Interface Automation specification.

This section provides a high-level overview of Microsoft Windows Automation API 3.0, which

includes the legacy Microsoft Active Accessibility API and the new UI Automation API. The

overview highlights the similarities and differences between Microsoft Active Accessibility and

UI Automation, describes the components and features that enable the two technologies to

work together, and provides guidelines for choosing which technology to implement.

This section includes the following topics:

 Microsoft Active Accessibility and UI Automation Compared

 Architecture and Interoperability

 Limitations of Microsoft Active Accessibility

 UI Automation Specification

 The IAccessibleEX Interface

 Choosing Microsoft Active Accessibility, UI Automation, or IAccessibleEx

 Engineering Software for Accessibility 54

Microsoft Active Accessibility and UI Automation
Compared

Although Microsoft Active Accessibility and Microsoft UI Automation are two different

technologies, the basic design principles are similar. Both expose the UI object model as a

hierarchical tree, rooted at the desktop. Microsoft Active Accessibility represents individual

UI elements as accessible objects, and UI Automation represents them as automation elements.

Both refer to the accessibility tool or software automation program as the client. However,

Microsoft Active Accessibility refers to the application or control offering the UI for accessi-

bility as the server, while UI Automation refers to this as the provider.

Microsoft Active Accessibility offers a single COM interface with a fixed, small set of

properties. UI Automation offers a richer set of properties, as well as a set of extended

interfaces called Control Patterns to manipulate accessible objects in ways Microsoft Active

Accessibility cannot.

While UI Automation previously had both managed and unmanaged APIs for providers, the

original release had no unmanaged interfaces for clients. Now, UI Automation clients can be

written entirely in unmanaged code.

The latest framework also provides support for transitioning from Microsoft Active

Accessibility servers to UI Automation providers. The IAccessibleEx interface specification

enables support for specific UI Automation Patterns and Properties to be added to legacy

Microsoft Active Accessibility servers without needing to rewrite the entire implementation.

The specification also allows in-process Microsoft Active Accessibility clients to access UI

Automation provider interfaces directly, rather than through UI Automation client interfaces.

The ecosystem of Windows automation technologies, called the Windows Automation API,

includes classic Microsoft Active Accessibility and Windows implementations of the UI Auto-

mation specification. The UI Automation specification is implemented on many Microsoft

products, including Windows 7, Windows Vista, Windows Server 2008, Windows Presentation

Foundation (WPF), and Microsoft Silverlight.

Architecture and Interoperability
This section briefly describes the architecture of the Windows Automation technologies

Microsoft Active Accessibility and Microsoft UI Automation, and the components that allow

interoperability between applications based on the two different technologies.

 Appendix A Windows Automation API: Overview 55

Microsoft Active Accessibility Architecture

Microsoft Active Accessibility exposes basic information about custom controls such as control

name, location on screen, and type of control, as well as state information such as visibility

and enabled/disabled status. The UI is represented as a hierarchy of accessible objects;

changes and actions are represented as WinEvents.

Microsoft Active Accessibility consists of the following components:

 Accessible object A logical UI element (such as a button) that is represented by

an IAccessible COM interface and an integer child identifier (ChildID).

 WinEvents An event system that enables servers to notify clients when an

accessible object changes.

 OLEACC.dll The run-time, dynamic-link library that provides the Microsoft Active

Accessibility API and the accessibility system framework. OLEACC implements

proxy objects that provide default accessibility information for standard UI

elements, including USER controls, USER menus, and common controls.

For Microsoft Active Accessibility, the system component of the accessibility framework

(OLEACC) helps the communication between accessibility tools and applications, as the

following illustration shows.

The applications (Microsoft Active Accessibility servers) provide UI accessibility information to

tools (Microsoft Active Accessibility clients), which interact with the UI on behalf of users. The

code boundary is both a programmatic and a process boundary.

 Engineering Software for Accessibility 56

UI Automation Architecture
With UI Automation, the UI Automation Core component (UIAutomationCore.dll) is loaded

into both the accessibility tools' and applications' processes. The core component manages

cross-process communication, provides higher level services such as searching for elements by

Property values, and enables bulk fetching or caching of Properties, which provides better

performance than the Microsoft Active Accessibility implementation.

UI Automation includes proxy objects that provide UI information about standard UI elements

such as USER controls, USER menus, and common controls. It also includes proxies that enable

UI Automation clients to get UI information from Microsoft Active Accessibility servers.

The following illustration shows the relationships among the various components in UI

Automation providers (Accessibility Tools) and clients (Applications).

Interoperability Between Microsoft Active Accessibility-

Based Applications and UI Automation-Based Applications

The UI Automation to Microsoft Active Accessibility Bridge enables Microsoft Active

Accessibility clients to access UI Automation providers by converting the UI Automation

object model to a Microsoft Active Accessibility object model. The following illustration

shows the role of the UI Automation-to-Microsoft Active Accessibility Bridge.

 Appendix A Windows Automation API: Overview 57

Similarly, the Microsoft Active Accessibility-to-UI Automation Proxy translates Microsoft Active

Accessibility-based server object models for UI Automation clients. The following illustration

shows the role of the Microsoft Active Accessibility-to-UI Automation Proxy.

By using the IAccessibleEx interface, you can improve existing Microsoft Active Accessibility

Server implementations by adding only required UI Automation object model information.

The Microsoft Active Accessibility-to-UI Automation Proxy takes care of incorporating the

added UI Automation object model. For more information, see the section of this appendix

titled “The IAccessibleEx Interface.”

 Engineering Software for Accessibility 58

Limitations of Microsoft Active Accessibility
Microsoft designed the Microsoft Active Accessibility object model about the same time as

Windows 95 released. The model is based on “roles” defined a decade ago, and you cannot

support new UI behaviors or merge two or more roles together. There is no text object model,

for example, to help assistive technologies deal with complex Web content. UI Automation

overcomes these limitations by introducing Control Patterns that enable objects to support

more than one role, and the UI Automation Text Control Pattern offers a full-fledged text

object model.

Another limitation involves navigating the object model. Microsoft Active Accessibility

represents the UI as a hierarchy of accessible objects. Clients navigate from one accessible

object to another using interfaces and methods available from the accessible object. Servers

can expose the children of an accessible object with properties of the IAccessible interface, or

with the standard IEnumVARIANT COM interface. Clients, however, must be able to deal with

both approaches for any server. This ambiguity means extra work for client implementers, and

broken accessible object models for server implementers.

UI Automation represents the UI as a hierarchical tree of Automation Elements, and provides

a single interface for navigating the tree. Clients can customize the view of elements in the

tree by scoping and filtering.

Finally, Microsoft Active Accessibility properties and functions cannot be extended without

breaking or changing the IAccessible COM interface specification. The result is that new

control behavior cannot be exposed through the object model; it tends to be static.

With UI Automation, as new UI elements are created, application developers can introduce

custom Properties, Control Patterns, and Events to describe the new elements.

UI Automation Specification
The UI Automation specification provides flexible programmatic access to UI elements on the

Windows desktop, enabling assistive technology products such as screen readers to provide

information about the UI to end users and to manipulate the UI by means other than stan-

dard input. The specification can be supported across platforms other than Windows.

 Appendix A Windows Automation API: Overview 59

The implementation of UI Automation specification in Windows is also called UI Automation

(UI Automation). UI Automation is broader in scope than just an interface definition. UI

Automation provides:

 An object model and functions that make it easy for client applications to receive events,

retrieve property values, and manipulate UI elements.

 A core infrastructure for finding and fetching across process boundaries.

 A set of interfaces for providers to express the tree structure, general properties, and

functionality of UI elements.

 A ”Control Type“ property that allows clients and providers to clearly indicate the

common properties, functionality, and structure of a UI object.

UI Automation improves on Microsoft Active Accessibility by:

 Enabling efficient out-of-process clients, while continuing to allow in-process access.

 Exposing more information about the UI in a way that allows clients to be out-of-process.

 Coexisting with and leveraging Microsoft Active Accessibility without inheriting its

limitations. For more information, see the section of this appendix titled “Limitations of

Microsoft Active Accessibility.”

The implementation of the UI Automation specification in Windows features COM-based

interfaces and managed interfaces.

UI Automation Elements

UI Automation exposes every piece of the UI to client applications as an automation element.

Providers supply Property values for each element. Elements are exposed as a tree structure,

with the desktop as the root element.

Automation Elements expose common properties of the UI elements they represent. One of

these properties is the Control Type, which describes its basic appearance and functionality

(for example, a button or a check box).

 Engineering Software for Accessibility 60

UI Automation Tree

The UI Automation tree represents the entire UI: the root element is the current desktop, and

child elements are application windows. Each of these child elements can contain elements

representing menus, buttons, toolbars, and so on. These elements in turn can contain

elements like list items, as the following illustration shows.

Be aware that the order of the siblings in the UI Automation tree is quite important. Objects

that are next to each other visually should also be next to each other in the UI Automation

tree.

UI Automation providers for a particular control support navigation among the child elements

of that control. However, providers are not concerned with navigation between these control

sub-trees. This is managed by the UI Automation core, using information from the default

window providers.

To help clients process UI information more effectively, the framework supports alternative

views of the automation tree: raw view, control view, and content view. As the following table

shows, the type of filtering determines the views, and the client defines the scope of a view.

 Appendix A Windows Automation API: Overview 61

Automation Tree Description

Raw view The full tree of Automation Element objects for which the desktop is the

root.

Control view A subset of the raw view that closely maps to the UI structure as the user

perceives it.

Content view A subset of the control view that contains content most relevant to the user,

like the values in a drop-down combo box.

UI Automation Properties

The UI Automation specification defines two kinds of properties: Automation Element

Properties and Control Pattern Properties. Automation Element Properties apply to most

controls, providing fundamental information about the element, such as its name. Control

Pattern Properties apply to Control Patterns, which are described next.

Unlike with Microsoft Active Accessibility, every UI Automation Property is identified by a

GUID and a programmatic name, which makes new Properties easier to introduce.

UI Automation Control Patterns

A Control Pattern describes a particular aspect of the functionality of an Automation Element.

For example, a simple ”click-able“ control like a button or hyperlink should support the Invoke

Control Pattern to represent the ”click“ action.

Each Control Pattern is a canonical representation of possible UI features and functions. The

current implementation of UI Automation defines 22 Control Patterns. The Windows Auto-

mation API can also support custom Control Patterns. Unlike Microsoft Active Accessibility

role or state properties, one Automation Element can support multiple UI Automation Control

Patterns.

UI Automation Control Types

A Control Type is an Automation Element Property that specifies a well-known control that

the element represents. Currently, UI Automation defines 38 Control Types, including Button,

CheckBox, ComboBox, DataGrid, Document, Hyperlink, Image, ToolTip, Tree, and Window.

Before you can assign a Control Type to an element, the element needs to meet certain con-

ditions, including a particular automation tree structure, Property values, Control Patterns,

and Events. However, you are not limited to these. You can extend a control with custom

Patterns and Properties, as well as with the pre-defined ones.

 Engineering Software for Accessibility 62

The total number of pre-defined Control Types is significantly lower than Microsoft Active

Accessibility accRole definitions, because UI Automation Control Types can be combined to

express a larger set of features while Microsoft Active Accessibility roles cannot.

UI Automation Events

UI Automation Events notify applications of changes to, and actions taken with Automation

Elements. There are four different types of UI Automation Events, and they do not necessarily

mean that the visual state of the UI has changed. The UI Automation Event model is indepen-

dent of the WinEvent framework in Windows, although the Windows Automation API makes

UI Automation Events interoperable with the Microsoft Active Accessibility framework.

The IAccessibleEx Interface
The IAccessibleEx interface enables existing applications or UI libraries to extend their

Microsoft Active Accessibility object model to support UI Automation without rewriting the

implementation from scratch. With IAccessibleEx, you can implement only the additional

UI Automation Properties and Control Patterns needed to fully describe the UI and its

functionality.

Because the Microsoft Active Accessibility-to-UI Automation Proxy translates the object

models of IAccessibleEx-enabled Microsoft Active Accessibility servers as UI Automation

object models, UI Automation clients do not need to do any extra work. The IAccessibleEx

interface can also enable in-process Microsoft Active Accessibility clients to interact directly

with UI Automation providers.

Choosing Microsoft Active Accessibility, UI Automation,
or IAccessibleEx

If you are developing a new application or control, Microsoft recommends using UI Auto-

mation. Although Microsoft Active Accessibility can be easier to implement in the short term,

the limitations inherent in this technology, such as its aging object model and inability to

support new UI behaviors or merge rolls, makes it more difficult and costly over the long

term. These limitations become especially apparent when introducing new controls. For more

information, see the section of this appendix titled “Limitations of Microsoft Active

Accessibility.”

The UI Automation object model is easier to use and is more flexible than that of Microsoft

Active Accessibility. The UI Automation Elements reflect the evolution of modern user inter-

faces, and developers can define custom UI Automation Control Patterns, Properties, and

Events.

 Appendix A Windows Automation API: Overview 63

Microsoft Active Accessibility tends to run slowly for clients that run out of process. To

improve performance, developers of accessibility tool programs often choose to hook into

and run their programs in the target application process: an extremely difficult and risky

approach. UI Automation is much easier to implement for out-of-process clients, and offers

much better performance and reliability.

If you are updating an existing Microsoft Active Accessibility-based application or control,

consider adding support for UI Automation by implementing the IAccessibleEx interface. First,

ensure that your application or control meets the following requirements:

 The baseline Microsoft Active Accessibility server's hierarchy of accessible objects must be

well-organized and error-free. IAccessibleEx cannot fix problems with existing accessible

object hierarchies.

 Your IAccessibleEx implementation must comply with both the Microsoft Active Acces-

sibility specification, and the UI Automation specification. Microsoft provides a set of

tools for validating compliance with both specifications.

If either of these requirements is not met, consider implementing UI Automation natively. You

can keep legacy Microsoft Active Accessibility server implementations for backward compati-

bility if it is necessary. From a UI Automation client’s perspective, there is no difference

between UI Automation providers and Microsoft Active Accessibility servers that implement

IAccessibleEx correctly.

 65

Appendix B

UI Automation Overview
Source: “Windows Automation API SDK” from the Microsoft Developer Network (MSDN)

Web site. To view this content online, go to http://msdn.microsoft.com/en-us/library/

aa163327.aspx.

Microsoft UI Automation is an accessibility framework for Windows. It provides programmatic

access to most user interface (UI) elements on the desktop. It enables assistive technology

products, such as screen readers, to provide information about the UI to end users and to

manipulate the UI by means other than standard input. UI Automation also allows automated

test scripts to interact with the UI.

UI Automation was first available in Windows XP as part of the Microsoft .NET Framework.

Although an unmanaged C++ API was also published at that time, the usefulness of client

functions was limited because of interoperability issues. For Windows 7, the API has been

rewritten in the Component Object Model (COM).

Note Although the library functions introduced in the earlier version of UI Automation are still

documented, they should not be used in new applications.

UI Automation client applications can be written with the assurance that they will work on

multiple Windows control frameworks. The UI Automation core masks any differences in the

frameworks that underlie various pieces of the UI. For example, the Content property of a

Windows Presentation Foundation (WPF) button, the Caption property of a Win32 button,

and the ALT property of an HTML image are all mapped to a single Property, Name, in the UI

Automation view.

UI Automation provides full functionality in Windows XP, Windows Server 2003, and later

operating systems.

UI Automation providers are components that implement UI Automation support on controls

and offer some support for Microsoft Active Accessibility client applications, through a built-in

bridging service.

Note UI Automation does not enable communication between processes that are started by

different users through the Run as command.

 Engineering Software for Accessibility 66

This appendix contains the following sections:

 UI Automation Components

 UI Automation Header Files

 UI Automation Model

 UI Automation Providers

UI Automation Components
UI Automation has four main components, as shown in the following table.

Component Description

Provider API A set of COM interfaces that are implemented by UI Automation providers. UI

Automation providers are objects that provide information about UI elements

and respond to programmatic input.

Client API A set of COM interfaces that enable client applications to obtain information

about the UI and to send input to controls.

Note The functions described in Deprecated Control Pattern Functions and

Deprecated Node Functions are obsolete and in the process of being removed.

Instead, client applications should use the UI Automation COM interfaces

described in UI Automation Element Interfaces for Clients.

UiAutomationCore.dll The run-time library, sometimes called the UI Automation core, that handles

communication between providers and clients.

OLEACC.dll The run-time library for Microsoft Active Accessibility and the proxy objects.

The library also provides proxy objects used by the MSAA-to-UIA Proxy to

support Win32 controls.

There are two ways of using UI Automation: to create support for custom controls by using

the provider API, and to create client applications that use the UI Automation core to com-

municate with UI elements. Depending on your focus, you should refer to different parts of

the documentation.

UI Automation Header Files
The UI Automation API is defined in several different C/C++ header files that are included

with the Microsoft Windows Software Development Kit (SDK). The UI Automation header files

are described in the following table.

 Appendix B UI Automation Overview 67

Header file Description

uiautomationclient.h Defines the interfaces and related programming elements used by UI

Automation clients.

uiautomationcore.h Defines the interfaces and related programming elements used by UI

Automation providers.

uiautomationcoreapi.h Defines general constants, GUIDs, data types, and structures used by UI

Automation clients and providers. It also contains definitions for the

deprecated node and Control Pattern functions.

uiautomation.h Includes all of the other UI Automation header files. Because most UI

Automation applications require elements from all UI Automation header

files, it is best to include uiautomation.h in your UI Automation application

projects instead of including each file individually.

If you are developing an application that uses the UI Automation API, you should include

uiautomation.h in your project. If your application supports Microsoft Active Accessibility,

include the oleacc.h header file. UI Automation applications that use GUIDs also require the

initguid.h header file. If needed, initguid.h should be included before uiautomation.h.

UI Automation Model
UI Automation exposes every element of the UI to client applications as an object represented

by the IUIAutomationElement interface. Elements are contained in a tree structure, with the

desktop as the root element. Clients can filter the raw view of the tree as a control view or a

content view. These standard views of the structure can easily be seen by using the UI Spy

application that is included with the Windows SDK. Applications can also create custom views.

A UI Automation Element exposes properties of the control or UI element that it represents.

One of these properties is the Control Type, which defines the basic appearance and

functionality of the control or UI element as a single recognizable entity, for example, a

button or check box.

In addition, a UI Automation Element exposes one or more Control Patterns. A Control

Pattern provides a set of Properties that are specific to a particular Control Type. A Control

Pattern also exposes methods that enable client applications to get more information about

the element and to provide input to the element.

 Engineering Software for Accessibility 68

Note There is no one-to-one correspondence between Control Types and Control Patterns. A

Control Pattern may be supported by multiple Control Types, and a control may support multiple

Control Patterns, each of which exposes different aspects of its behavior. For example, a combo

box has at least two Control Patterns: one that represents its ability to expand and collapse, and

another that represents the selection mechanism. However, a control can exhibit only a single

Control Type.

UI Automation provides information to client applications through events. Unlike WinEvents,

UI Automation Events are not based on a broadcast mechanism. UI Automation clients

register for specific Event notifications and can request that specific Properties and Control

Pattern information be passed to their event handlers. In addition, a UI Automation Event

contains a reference to the element that raised it. Providers can improve performance by

raising Events selectively, depending on whether any clients are listening.

Go further: Go to http://go.microsoft.com/fwlink/?LinkId=150842 for more information on the

following topics:

 Deprecated Control Pattern Functions

 Deprecated Node Functions

 UI Automation Element Interfaces for Clients

 UI Automation Control Types Overview

 UI Automation Control Patterns Overview

 UI Automation Events Overview

UI Automation Providers
After designing your implementation, you must implement a provider interface to support

your implementation. For more details on how to do so, go to http://go.microsoft.com/

fwlink/?LinkId=150842.

